Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine.

نویسندگان

  • Vinita Uttamsingh
  • Richard Gallegos
  • Julie F Liu
  • Scott L Harbeson
  • Gary W Bridson
  • Changfu Cheng
  • David S Wells
  • Philip B Graham
  • Robert Zelle
  • Roger Tung
چکیده

Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altering Metabolic Profiles of Drugs by Precision Deuteration: Reducing Mechanism-Based Inhibition of CYP2D6 by Paroxetine s

Selective deuterium substitution as ameans of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 ...

متن کامل

Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator.

We identify here for the first time the low-affinity cytochrome P450 (P450) isoforms that metabolize paroxetine, using cDNA-expressed human P450s measuring substrate depletion and paroxetine-catechol (product) formation by liquid chromatography-tandem mass spectrometry. CYP1A2, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 were identified as paroxetine-catechol-forming P450 isoforms, and CYP2C19 and CYP2...

متن کامل

Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine.

Paroxetine, a selective serotonin reuptake inhibitor, is a potent inhibitor of cytochrome P450 2D6 (CYP2D6) activity, but the mechanism of inhibition is not established. To determine whether preincubation affects the inhibition of human liver microsomal dextromethorphan demethylation activity by paroxetine, we used a two-step incubation scheme in which all of the enzyme assay components, minus ...

متن کامل

In vitro-in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude.

Attempts at predicting drug-drug interactions perpetrated by paroxetine from in vitro data have utilized reversible enzyme inhibition models and have been unsuccessful to date, grossly underpredicting interaction magnitude. Recent data have provided evidence for mechanism-based inactivation of CYP2D6 by paroxetine. We have predicted the pharmacokinetic consequences of CYP2D6 inactivation by par...

متن کامل

Response to serotonin reuptake inhibitors in OCD is not influenced by common CYP2D6 polymorphisms

The cornerstone of pharmacotherapy for OCD is serotonin reuptake inhibition, either with clomipramine or with selective serotonin reuptake inhibitors (SSRIs). In spite of the success of serotonin reuptake inhibiting drugs, nearly half of OCD patients do not respond to treatment. Treatment response may be affected by genetic polymorphisms of the P450 metabolic system. The four most common enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 354 1  شماره 

صفحات  -

تاریخ انتشار 2015